Total No. of Questions: 8]			estions: 8] SEAT No. :								
P9083			[Total No. o	of Pages : 4							
			[6179]-208	J							
S.E. (Civil)											
FLUID MECHANICS											
(2019 Pattern) (Semester-III) (201003)											
			9.								
Time: 2½ Hours] [Max. N Instructions to the candidates:											
111311 ac			r Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.								
2)	A	Answe	rs to the all questions should be written in single answer-book.								
3) 4)			iagrams must be drawn wherever necessary. es to the right indicate full marks.								
<i>5</i>)			logarithmic tables, slide rule, mollier charts, electronic pocket	calculator							
	(non p	rogrammable) and steam tables is allowed.								
6)	A	Ssum	e suitable data, if necessary.								
01)	`	2 XXX		·							
Q1) a	.)		er is flowing through a pipe of diameter 30 cm at a velocity of oil flowing in another pipe of diameter								
	0	7 - 4	condition of dynamic similarity is satisfied between two p								
			osity of oil water and oil is given as 0.01 poise and 0.025 p								
			ific gravity of oil = 0.8	[5]							
b)	Exp	lain with neat sketch the phenomenon of "Bounda	ry Layer							
			aration".	[6]							
c)	Expl	ain with neat sketch various methods to control 'Bound	ary Layer							
		Sepa	aration".	[6]							
			OR								
Q2) a	.)	Dete	ormine the dimensions of the following terms: Discharge Force Specific weight Kinematic viscosity Dynamic viscosity lain the following with the help of neat sketch:	[5]							
		i)	Discharge	×.							
		ii)	Force (S)								
		iii)	Specific weight								
		iv)	Kinematic viscosity								
		v)	Dynamic viscosity								
b)	Expl	ain the following with the help of neat sketch.	[6]							
		i)	Laminar boundary layer								
		ii)	Turbulent boundary layer and								
		iii)	Laminar sub-layer								
С)		lain the Buckingham's π -method of dimensional analysis.	[6]							
	•	1									
			×	<i>P.T.O.</i>							

Q3)	a)	cen	tre and 30 mm from the pipe centre are 2.1 m/s and 1.6 m sectively and flow in the pipe is turbulent. Calculate the shear friction ocity and wall shearing stress.	/s			
	b)	Exp	plain in brief "Moody's Diagram" [5	5]			
Q4)	c)a)	400 are the s	ee pipes of lengths 800m, 500m, and 400m and of diameter 500mr mm, and 300 mm respectively are connected in series. These pipe to be replaced by a single pipe of length 1750 m. Find the diameter single pipe. OR uid of viscosity 8 poise and specific gravity 1.2 is flowing through ular pipe of diameter 100 mm. The maximum shear stress at the pipe.	es of 6]			
				6]			
		i) 💸	The pressure gradient				
		Si)	The average velocity and				
		iii)	Reynolds number of the flow				
	b)	Explain the procedure of Hardy Cross method for the analysis of pipe network. [6]					
	c)	Exp	plain in brief the following terms related with flow through pipes: [5]			
		i)	Major losses and	5			
		ii)	Minor losses	J'			
Q 5)	a)	Def	ine the following terms related with types of open channel flow: [0]	6]			
		i)	Time the following terms related with types of open channel flow: Steady flow Unsteady flow Uniform flow Non-uniform flow Laminar flow Turbulent flow				
		ii)	Unsteady flow				
		iii)	Uniform flow				
		iv)	Non-uniform flow				
		v)	Laminar flow				
		vi)	Turbulent flow				
	b)	Der	ive the conditions for most economical trapezoidal channel section	l .			
				6]			

- Find the specific energy of flowing water through a rectangular c) i) channel of width 5 m when the discharge of 10.1 m³/s and depth of water is 3m. [3] Find the critical depth and critical velocity of the water flowing ii) through a rectangular channel of width 5m, when discharge is 15.5 m^3/s . [3] OR A trapezoidal channel has side slope of 1 horizontal to 2 vertical and **Q6**) a) slope of its bed is 1 in 1500. The area of the section is 40m². Find the dimensions for the channel sections if it is most economical as shown in Figure 6 a. Take Chezy's constant as 80. [6] Explain the Specific energy curve and Specific force diagram with neat b) sketch. Explain in brief: c) Classification of Channel i) ii) Velocity distribution in open channel. Experiments were conducted in wind tunnel with a wind speed of 50 km/ hour on flat plate of size 2m long and 1 m wide. The density of air is 1.16 kg/m³. The coefficients of lift and drag are 0.76 and 0.16 respectively. Determine: [6] the lift force i)
- **Q7**) a)
 - the drag force ii)
 - the resultant force iii)
 - direction of resultant force and iv)
 - power exerted by air on the plate V)

b)	Explain Classification of channel bottom slopes with neat sketches.	[6]
c)	Explain with neat sketch:	
	i) Karman Vortex Trail	[3]
	ii) Polar Diagram	[3]
	OR	
Q8) a)	A rectangular channel is 20 m wide and carries a discharge of 65 m ³ /	s. It
	is laid at a slope of 0.0001. At a certain section along the channel len	gth,
	the depth of flow is 2m. How far U/S or D/S will the depth be 2.6m? T	
	n=0.02. Use direct step method with two steps. Consider the de increment in the interval of 0.1m.Classify and sketch the profile.	pth 10]
	9	_
b)	Explain in brief:	[8]
	i) Magnus effect	
	ii) Types of drag	
	Explain in brief: i) Magnus effect ii) Types of drag Bluff body and iv) Streamlined body	
	iv) Streamlined body	
		9
		3
	D. W. J. C. J. J. C. J. C. J. C. J. C. J. C. J. J. C. J. C. J. C. J. C. J. C.	
	9. 3. ·	
	6.	
	208 4 Sp. Mo. Mo. Mo. Market Sp.	
[6179]-	·208 4 🔎 ·	